Recursive Polynomial Remainder Sequence and the Nested Subresultants
نویسنده
چکیده
Abstract. We give two new expressions of subresultants, nested subresultant and reduced nested subresultant, for the recursive polynomial remainder sequence (PRS) which has been introduced by the author. The reduced nested subresultant reduces the size of the subresultant matrix drastically compared with the recursive subresultant proposed by the authors before, hence it is much more useful for investigation of the recursive PRS. Finally, we discuss usage of the reduced nested subresultant in approximate algebraic computation, which motivates the present work.
منابع مشابه
Recursive Polynomial Remainder Sequence and its Subresultants
We introduce concepts of “recursive polynomial remainder sequence (PRS)” and “recursive subresultant,” along with investigation of their properties. A recursive PRS is defined as, if there exists the GCD (greatest common divisor) of initial polynomials, a sequence of PRSs calculated “recursively” for the GCD and its derivative until a constant is derived, and recursive subresultants are defined...
متن کاملSubresultants in Recursive Polynomial Remainder Sequence
We introduce concepts of “recursive polynomial remainder sequence (PRS)” and “recursive subresultant,” and investigate their properties. In calculating PRS, if there exists the GCD (greatest common divisor) of initial polynomials, we calculate “recursively” with new PRS for the GCD and its derivative, until a constant is derived. We call such a PRS a recursive PRS. We define recursive subresult...
متن کاملVarious New Methods for Computing Subresultant Polynomial Remainder Sequences (PRS’s)
Teaching subresultant prs’s is an unpleasant experience because there is a misunderstanding about the role of Sylvester’s two matrices and how they affect the signs of the sequences. Almost all articles and texts on the subject perform operations in Z[x] and use a form of pseudo-division that distorts the signs of the polynomial remainders; hence, sentences like “forget about the signs” appear ...
متن کاملAn elementary approach to subresultants theory
In this paper we give an elementary approach to univariate polynomial subresultants theory. Most of the known results of subresultants are recovered, some with more precision, without using Euclidean divisions or existence of roots for univariate polynomials. The main contributions of this paper are not new results on subresultants, but rather extensions of the main results over integral rings ...
متن کاملSubresultants Under Composition
It is a well known fact that the resultants are invariant under translation. We extend this fact to arbitrary composition (where a translation is a particular composition with a linear monic polynomial), and to arbitrary subresultants (where the resultant is the 0-th subresultant).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005